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Thermal treatment of the minority game
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We study a cost function for the aggregate behavior of all the agents involved in the minority game~MG! or
the bar attendance model~BAM !. The cost function allows us to define a deterministic, synchronous dynamic
that yields results that have the main relevant features than those of the probabilistic, sequential dynamics used
for the MG or the BAM. We define a temperature through a Langevin approach in terms of the fluctuations of
the average attendance. We prove that the cost function is an extensive quantity that can play the role of an
internal energy of the many-agent system while the temperature so defined is an intensive parameter. We
compare the results of the thermal perturbation to the deterministic dynamics and prove that they agree with
those obtained with the MG or BAM in the limit of very low temperature.
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I. INTRODUCTION

The bar attendance model~BAM ! @1# and the minority
game~MG! ~see Refs.@2–7#! have recently become regula
testing grounds to investigate how the individual actions o
system of independent agents give rise to some kind of m
roscopic ordering. In the MG, the agents have to mak
binary decision which for the sake of concreteness, it is u
ally taken to be associated to going or not going to a bar.
winning option is that of the minority. The MG is a particula
case of the BAM which has in turn been introduced to sh
how an ensemble of agents that perform inductive reaso
can self organize to match some condition that is gener
accepted to be the most adequate. In the case of the B
this corresponds to the largest acceptable attendance wi
incurring some discomfort.

Both models have been compared with each other in R
@8# and@9# working out a generalized version of the MG~the
GMG! in order to consider situations in which the minori
is replaced byan arbitrary fraction m of the ensemble of
players. This is fixed externally as a control parameter. In
these models the players update their attendance probab
with a random correction, depending upon the past recor
successes and failures. Asymptotic stable configurations
always reached. These are, however, of quite a different
ture depending upon the values of the control parameter
the initial conditions, and on updating the rules involved
each model.

In the present paper we are interested in the case
which the asymptotic stable distribution can be assimila
to a kind of thermodynamic equilibrium. In these situatio
the agents continue to update their attendance probabi
but the corresponding probability density distribution r
mains stationary. The stochastic dynamics that has been
veloped for the BAM in Ref.@9# always leads the system t
these types of configurations while in the cases studied
the GMG, whenm is significantly larger~or smaller! than
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1/2, the system gets stuck in quenched configurations
strongly depend upon the initial conditions. Updating sto
because agents have accumulated a great number of
cesses. However, these ‘‘glassy’’ states can nevertheles
‘‘melted’’ into equilibrium if the memory of past successes
repeatedly eliminated in an iterative process that can be
similated to an annealing procedure.

A remarkable result that has been obtained in all num
cal simulations is that the equilibrium configuration entails
diversity in the individual actions. The population is dras
cally partitioned into two subsets, one that always goes to
bar and the other that never goes. It therefore seems th
spite of the fact that the agents do not exchange informat
they manage to coordinate their actions to proceed in
opposite ways. The number of agents in both subsets are
ratio that is equal tom/(12m). Such polarization is not an
intuitive result. A naı¨ve guess is to assume that all agen
should choose the same probability of attendance and
should be equal tom. However this turns out to be not
stable distribution because parties that are larger or sm
than the accepted crowding occur with a great chance.

The fact that all agents adjust their attendance proba
ties in order to minimize their failures~i.e., to go when the
bar is crowded or not go when the bar is empty! leads to an
aggregate behavior that minimizes a global cost associ
with inadequate attendances. We propose to express
cost by the second moment of the attendance with respe
the acceptable levelm.

The purpose of the present paper is to investigate the
fects of introducing that cost function in the relaxation d
namics of the system. We show that this is a Lyapunov fu
tion for the many-agent system, i.e., it is possible to deriv
deterministic dynamics as the descent along its gradient,
monotonically reduces its value. This corresponds to
heavily coordinated, synchronous evolution.

We prove that the cost function meets the requirement
an internal energy of the many-agent system. We also in
duce a temperature parameter through a Langevin-like
proach that can be defined in terms of the fluctuations of
attendance strategies. Except for finite-size effects this
©2002 The American Physical Society11-1
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be proven to be an intensive parameter. We also superim
thermal fluctuations to the deterministic dynamics mention
above. Depending upon the amplitude of these fluctuatio
the polarization is gradually smeared until a point in which
completely disappears.

The thermally modified, relaxation process that we defi
here is completely different from those involved in the GM
or BAM approaches that involve the independent and un
ordinated actions of all the agents. The latter involves a r
dom updating of individual attendance strategies gover
by a ~small! uncertainty amplitude that is interpreted as t
precision of such updating. We prove that in the limit of lo
temperature, and small uncertainty amplitude both dynam
lead to entirely equivalent asymptotic equilibrium configu
tions. The thermal interpretation of the uncertainty amplitu
also allows us to cast the annealing process presente
Refs. @8# and @9# into a thermal framework as the wel
known case of simulated annealing@10#.

In Sec. II, we derive the cost function, and in Sec. III, w
investigate the dynamics that corresponds to the des
along its gradient. In Sec. IV, we present a Langevin
proach to define the temperature in terms of the fluctuati
that are present in the asymptotic equilibrium configurati
In Sec. V, we compare this with more traditional approac
for the relaxation process. In Sec. VI, we draw the conc
sions.

II. COST FUNCTION

Consider a set ofN agents that have a probabilitypi( i
51,2, . . . ,N) to go to the bar. The distribution of thepi ’s is
given by the probability density functionP(p). As we shall
shortly explain, thepi are updated in time according to som
dynamics and therefore the functionP(p) also changes in
time.

In the ordinary rules of the GMG when a player goes
the bar and finds it is crowded or when she does not go
the bar is empty, she loses a point. If the opposite happ
she gains a point. The level of crowding is specified by
value of the control parameterm. When her account of point
falls below zero she updates her attendance probab
choosing at random a different value within the interval (pi
2dp/2,pi1dp/2). When equilibrium is reached, the resu
ing distributionP(p) concentrates the population in the im
mediate neighborhood ofp.0 and p.1, plus an almost
vanishing contribution from intermediate values. The ratio
the areas below these two peaks is close tom/(12m).

The aggregate behavior is associated to the density d
bution P(A) that gives the probability of occurrence of
party ofA customers attending the bar. The functionP(A) is
of course completely determined byP(p). In order to calcu-
late it let us assume without loss of generality that all
agents distribute themselves intoD11 different bins of
nd(d50,1, . . . ,D) agents each, with strategiespd5d/D.
The density distributionP(p) can then be written as

P~p!5 (
d50

D
nd

N
d~p2pd!. ~1!
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With this assumption, the distributionP(A) can be written as

P~A!5 (
l 050

n0

. . . (
l D50

nD

)
d50

D F S nd

l d
D pd

l d~12pd!nd2 l dG
3dS A2 (

d50

D

l dD . ~2!

We define the cost function for the whole ensemble
agents as in Ref.@9#, namely, as the second moment@11#
with respect to the tolerated crowding levelm,

C5 (
A50

N

~A2Nm!2P~A!. ~3!

In order to calculate it, we introduce Eq.~2! into the defi-
nition of Eq. ~3! and perform first the summation overA
taking advantage of thed(A2(d

Dl d). Once this is done, one
can perform the summations involved in each of the term
which (Nm2( l d)2 splits down. The summations over di
ferentl ’s decouple from each other and result either in a o
or in ndpd ; in nd

2pd
21ndpd(12pd) or in (ndpd)(nd8pd8).

These terms can be gathered again to yield

C5S Nm2 (
d50

D

ndpdD 2

1 (
d50

D

ndpd~12pd!

5N2~m2^p&!21N~^p&2^p2&!, ~4!

where^pm& stands for(ppmP(p)5(dpd
mnd /N for m51,2.

The expression ofC given in Eq.~4! contains no assumption
about the system being in equilibrium. This is the reas
why C is proportional toN2 instead of being proportional to
the sizeN of the system, as befits to an extensive magnitu
The numerical simulations however indicate that in equil
rium ^p&5m and therefore this term cancels except for po
sible fluctuations. Actually theO(N2) term is eliminated by
any distributionP(p) whose mean has the required valuem.
For an initial condition with uniformly distributedpi ’s and
Po(p)51, as it is used for most simulations, the cost isC
5N2(m21/2)21N/6. Such an initial condition is a good
guess for the final distribution whenm.1/2 ~as for the most
traditional settings of the MG!, but it is indeed very poor for
the GMG whenm5” 1/2. In the next sections, we discuss
greater detail the value ofC in equilibrium.

The naı¨ve guessP(p)5d(p2m) is also seen to cance
theO(N2) terms inC. However such distribution causes th
parties withA close to, but different fromNm occur with a
sizable probability. TheO(N) in C are minimized precisely
when the probability of occurrence of such parties tends
zero by polarizing the population into two subsets with o
posite attendance strategies. To see this we approximate
two peaked equilibrium distribution that is usually obtain
in numerical simulations by

P~p!5
n1

N
d~p2p1!1

n2

N
d~p2p2!. ~5!
1-2
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One readily sees that theO(N2) terms are eliminated whe
n1p11n2p25mN and theO(N) terms are also eliminated i
the two peaks arep150;n15N(12m), and p251;n2
5mN. The relaxation dynamics that tends to minimize in
vidual losses is therefore seen to also optimize the glo
cost function defined in Eqs.~3! and ~4!.

III. DETERMINISTIC DYNAMICS FOR GMG

All the agents of the system, through uncoordinated
tions minimize the total costC that is an aggregate functio
defined for the whole system. This fact suggests an alte
tive representation of the actions of the agents as a sync
nous, deterministic dynamics associated to the descent a
the gradient ofC. This is described by the following set o
coupled differential equations for thepi ’s:

dpi

dt
52h

]C
]pi

5h@2N~m2^p&!2~122pi !#. ~6!

In Eq. ~6! h stands for a positive free parameter that—
we shall shortly see—provides the scale for the time evo
tion of the system. TheO(N2) andO(N) terms in Eq.~4! are
translated into a fast and a slow dynamic that involve corr
tions of thepi that are, respectively,O(N) andO(1). To see
this we first derive the dynamics followed by^p& by calcu-
lating the average overi in both sides of Eq. 6. We thu
obtain

dW~ t !

dt
522h~N21!W~ t !22hS 1

2
2m D , ~7!

where we have setW(t)5(^p&2m). This can explicitly be
integrated. The solution is

W~ t !5
m21/2

N21
1Woe22h(N21)t, ~8!

with Wo standing for the initial value ofW(t). This expres-
sion allows us in turn to find an approximate solution of t
equations of motion for the individualpi ’s. To this end we
write an asymptotic approximation of Eq.~6! in which we
assume that a long enough time has elapsed so that^p&2m
can be approximated by the constant term ofO(1/N) in Eq.
~8!. By keeping only the leading order inN we obtain

dpi

dt
52h~pi2m!. ~9!

Note that dependence ofpi(t) involves apositiveexponen-
tial. However, this equation is not valid fort→` because the
fact that thepi ’s are probabilities, and are therefore bound
between 0 and 1, it is not included in the equations but ra
in the boundary conditions of Eqs.~6!.

Equations~7! and~9! correspond, respectively, to the fa
and slow dynamics that have been mentioned above. In
first place we see that except for terms that areO(1/N), ^p&
approachesm exponentially with the very short-time con
stantl51/(2hN) that tends to zero as the system involve
larger number of individuals. On the other hand, the diff
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encespi(t)2m insteadgrow exponentially for alli indicat-
ing that thepi ’s departexponentially from the averagem and
eventually saturate at its largest or smallest possible value
or 0, thus polarizing the population of agents. This proc
however takes place with a time constant 1/(2h), that is
O(N) longer than the one involved in the evolution of^p&
and is independent of the size of the system. While the
eragê p& approaches very fast to the valuem, the individual
pi ’s departslowly from the same value.

Equations~6! can be tested numerically by approximatin
them by finite differences. The individual attendance pro
abilities pi are thus taken to be updated aspi(t11)5pi(t)
1D(pi) where

D~pi !5h@2N~m2^p&!2~122pi !#. ~10!

The resulting density distributionsP(p) that are obtained
with this dynamics are shown in Fig. 1. The value ofh and
therefore that of the time constantl is in principle arbitrary.
However if l@1, the only effects that are noticeable a
those of the fast dynamics while ifl!1, the descent toward
the minimum keeps bouncing at opposite sides of the w
and never reaches its bottom. When 1/2&l&2 the descent is
gradual enough so that the interplay of both terms inD(pi)
leads the system to a minimum ofC.

The intermediate stages in the gradient descent are
shown in Fig. 1. In the first few steps the~fast! uniform
correction ofO(N) is seen to shift rigidly the initial distri-
bution to one side with the aim of adjusting the value of^p&
to that of m. As a consequence, agents are piled up in o
end while the other is completely cleared. Once the lead
term in C is nearly canceled, the slow dynamics gradua
gathers agents atbothends of the distribution producing mi
nor fluctuations in the value of^p&. The density distribution
P(p) that is finally obtained is seen to correspond to
strongly polarized population thus reproducing the main f
ture of the equilibrium distributions obtained with the rul
traditionally used in the GMG or the BAM.

FIG. 1. Probability density distributions obtained after 104 steps
~solid line!, 23104 steps~open circles!, and 23106 steps~dash
line!, using Eq.~10!, 2hN51, andm50.6. The first distribution
shows a rigid displacement to the right; the next ones show how
population is progressively polarized.
1-3
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The present approach yields a density distribution t
displays the same polarization that is found in the GMG o
the BAM. It is remarkable that such a general qualitat
agreement is found, although those frameworks differ dee
from the deterministic formulation. The conceptual diffe
ence between the two approaches lies in the special
played by the record of successes and failures that is ke
the BAM or GMG and that is completely absent in th
present treatment. The usual rules of the GMG can thus
considered to correspond to a dynamics constrained by
~positive! balance of points that have been accumulated
the past instances of the game. There are other differe
that deserve further discussion. These are related to the
chastic elements of the dynamics used in that framew
which are absent from the present one. Within this approa
these can be assimilated to the effects of a finite tempera
We turn to this point in the next section.

IV. THERMAL FLUCTUATIONS

The usual rules of the BAM or the GMG involve a st
chastic updating of the attendance probabilities of each
tomer. When the account of points of thei th player falls
below zero a new value ofpi is chosenat randomfrom the
interval (pi2dp/2,pi1dp/2). This can be interpreted as
kind of thermal fluctuation in whichdp can be related to the
temperature.

A few qualitative features support this. In equilibrium, th
population is drastically polarized into those that consisten
go to the bar~and thereforepi51) and those that do not g
(pi50). A small fraction havingpi ’s with intermediate val-
ues continuously migrate between both extreme strateg
This migration causes that the value of^p& fluctuates around
m. These random values of^p& have a distribution that is
sharply peaked at that value and has a width that is regul
by dp. In what regards the density distributionP(p), a small
value of dp produces sharp peaks atp50 and p51 and
P(p);0 for intermediate values. For larger values ofdp
there is a larger fraction of players that migrate betweep
50 andp51 thus producing a rising in the ‘‘bottom’’ of the
distributionP(p).

The above qualitative arguments provide hints to int
duce thermal fluctuations in the deterministic dynamics p
sented in the preceding section and also about their rela
ship with dp for the case of the GMG. However a singul
situation occurs fordp→0 that is associated to an infinitel
long relaxation process or whendp.1 in which this param-
eter loses its physical meaning of being a probability.

Thermal-like fluctuations can formally be introduced fo
lowing the same steps as the Langevin approach to des
a Brownian particle. In the present situation we start with
Eq. ~7! for the motion of the average value^p&, and we add
a stochastic termL(t) that accounts for the random fluctu
tions

dWs~ t !

dt
522h~N21!Ws~ t !22hS 1

2
2m D1L~ t !.

~11!
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We have added an indexs to W(t) in Eq. ~7! to stress the fact
that this is the value ofW(t) in the presence of stochast
external fluctuations. The source of noiseL(t) can be taken
to be the average ofN uncorrelated sources of random flu
tuations affecting all the independent agents. One still ha
specify a parameter related to the statistical properties of
distribution of the stochastic functionL(t). We will shortly
prove that this is closely related to the temperature. As us
we assume

L~ t !50, ~12!

L~ t !L~ t8!5Gd~ t2t8!. ~13!

In Eqs.~12! and~13! and in all what follows,( . . . ) denotes
an average over a suitable ensemble of replicas of
N-agent system. The parameterG is a constant that repre
sents the mean-square amplitude of instantaneous, unc
lated perturbations. The stochastic differential Eq.~11! can
explicitly be integrated. The result is

Ws~ t !5W~ t !1e22h(N21)tE
0

t

e2h(N21)vL~v!dv, ~14!

where W(t) is the solution given in Eq.~8! in which no
fluctuations are present. If an average is made on both s
of Eq. ~14!, over a subensemble of systems having the sa
initial conditionsWo appearing in Eq.~8!, one can immedi-
ately see that Eq.~12! implies thatWs(t)5W(t) and there-
fore the convergence of̂p& to m @up to termsO(1/N)] is
also insured within the stochastic dynamics. If the me
square fluctuations ofWs(t) are calculated with the aid o
Eq. ~13!, we get

Ws
2~ t !5W2~ t !1

G

4hN
@12e24hNt#. ~15!

The effect of the stochastic term inWs(t) produces a nonva
nishing valueWs

2(`). In ordinary statistical mechanics, th
mean-square fluctuations of the stationary solution of the
locity of Brownian particles is directly related to its avera
kinetic energy and can be set equal tokT. By analogy we
formally define a temperature parameterT that is indepen-
dent from the size of the system, as the mean-square fluc
tions of ^p& in an equilibrium configuration, scaled by th
number of agents of the system. Neglecting termsO(1/N2)
we obtain

T8N~^p&2m!25
G

4h
. ~16!

The parameterh is a factor relatingT with the amplitude of
the random fluctuations and plays a similar role than
Boltzmann constant.

Equation~16! allows us to write the ensemble average
the cost C̄ for an equilibrium configuration and for finite
temperature. Up to the leading order inN we obtain
1-4
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C̄5N2~m2^p&!21N~^p&2^p&2. !5N@T1m2^p&2.#.

~17!

C̄ is a positive, extensive magnitude which, in equilibriu
grows linearly with the size of the system and can theref
be taken to play the role of an internal energy.

The linear dependence ofC̄ with the size of the system
can be checked for the GMG. To do so we have calcula
the cost using the definition of Eq.~3!, with a different num-
ber of agents. We first allowed the system to relax to
asymptotic equilibrium configuration and performed a su
able ensemble average over several replicas of the sys
The linear dependence is shown in Fig. 2. The last itera
steps are used to estimate the dispersion of the nume
result and is shown with a pair of dotted lines. The slope
these lines change slightly with the parameterdp of the
GMG. This is due to the relation betweenT anddp that we
discuss later.

V. THERMAL RELAXATION

To include thermal fluctuations into a numerical treatm
of the deterministic dynamics amounts only to introduce
random additive term in Eq.~10!, namely,

pi~ t11!5pi~ t !1D~pi !1Lt
( i )~ t !, ~18!

whereLt5t(1/22r ) and r is a random number uniformly
distributed in the interval@0,1#. This function represents th
fluctuations produced on thei th agent by a thermal bath. Th
temperature is defined by the second momentG of the prob-
ability density of theLt

( i )(t).
The limit in which Lt

( i )(t) has zero width~and therefore
t50) corresponds to the deterministic dynamics discus
in Sec. II. Larger values oft are associated to fluctuation
that may eventually override the updating amplitudeD(pi)
and tend to smear the distribution with two sharpd func-
tions, increasing the fraction of the population that ha
strategiespi5” 0 or 1.@See Fig. 3~a!.# If t is further increased
the polarization is progressively destroyed because the
of the pi ’s towards 0 or 1 has to equilibrate against rand
shocks that prevent them to reach those limiting values.

FIG. 2. Linear dependence of the dimensionless quantityC̄ as a
function of N for the GMG,m50.6, and different values ofdp.
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Given the stochastic dynamics of Eq.~18! together with
the definition in Eq.~16! it is possible to calculate the valu
of T in an equilibrium configuration, and relateT with t. The
parameterh has to be chosen such that the relaxation of
deterministic dynamics is guaranteed, i.e., when the t
constantl51/(2hN) introduced in Sec. III isl;1. In Fig.
4 we show that, as expected,T;t2.

Equation~16! allows us also to calculateT in any con-
figuration reached through the stochastic dynamics of
GMG or the BAM. With this we can check two importan
features. The first is an estimation of the finite-size corr
tions in the definition ofT given in Eq.~16!, i.e., the regime
in which T is independent of the size of the system. T
second outcome is to establish a quantitative relationship
tweenT anddp that goes into the relaxation dynamics of th
GMG.

We have calculatedWs
2(t) for the GMG using severa

values ofdp andN. We have allowedt to be large enough to
reach equilibrium. We have then performed an ensemble
erage over several replicas of the system. The last steps
been used to gauge the dispersion of the numerical val
The results are shown in Fig. 4~b! where we plotNWs

2(`) as
a function ofdp.

FIG. 3. ~a! Probability density distribution obtained with th
thermal dynamic of Eq.~18! for the values oft that are shown in
the inset.~b! Same distributions obtained with the stochastic d
namics of the GMG, for the values ofdp shown in the inset.
1-5
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All the above-mentioned features can be extracted fr
Fig. 4. First finite-size effects are clearly seen to affect o
the smallest systems up toN;500. Second, the indepen
dence ofNWs

2(`) from the size of the system as assumed
the definition of Eq.~16! follows from the fact that the
curves forN>500 lump tightly together. In the third place,
linear regression of all the curves establishes thatdp andT
have the same physical interpretations, and within the in
val considered are nearly proportional to each other, nam
T5Kdp, with K5(320620)1024.

The fact thatT anddp are conceptually equivalent lead
to extend the GMG simulations to higher values ofdp.
These values have seldom been explored@13# in the litera-
ture because this parameter measures theminor adjustments
performed by the agents that try to find the ‘‘best’’ atte
dance probability. Large values ofdp could for instance cor-
respond to irresolute or hesitating agents.

There are however important points that have to be c
sidered. In the first place the value ofdp cannot be taken

FIG. 4. ~a! Relationship between the dimensionless quantitiet
and T as defined in Eq.~16!. Solid squares correspond to the n
merical calculation, while the line is the quadratic regression 14T
55.43102520.114t1703.9t2, with R250.9999.~b! Linear depen-
dence of the dimensionless fluctuationsNWs

2 with dp,1 for the
GMG, and several values ofN ~indicated in the figure!. The upper
inset shows that fluctuations saturate at a limiting value;0.05 if
the plot is extended fordp.1.
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arbitrarily large. This is so because it measures the un
tainty of the value of a probability. Values ofdp*1 have
therefore little physical meaning. In addition, ifdp is never-
theless extended to values higher than one by any plaus
analytical extension~for instance using periodic or reflectiv
boundary conditions!, the fluctuationsWs

2 for dp.1 are seen
to saturate at an approximately constant value@see inset in
Fig. 4~b!#. These facts are the reason that the corresponde
betweendp andT necessarily breaks down.

A comparison of the probability density distribution
P(p) obtained with both approaches further supports t
departure. In Fig. 3~b! we show the equilibrium density dis
tributions that are obtained with the stochastic, asynchron
updating rules of the GMG for two values ofdp ~and m
50.6). It is seen that these diverge from those of Fig. 3~a!
that are obtained with the dynamics given in Eq.~18!. Note
however that there are noticeable resemblances for small
plitude fluctuations. See for instance the distributions plot
in full line in Fig. 3~b! and the one fort50.003 in Fig. 3~a!.

As mentioned before, the origin of the departure betwe
both dynamics can be found in the scoring of successes
failures that is used in the GMG, that is absent in the pres
approach. Some customers can be considered to be excl
from the updating dynamics as a consequence of their g
accumulation of points. This, for instance, produces the la
value of P(p51): many players that have accumulated
large positive account attending the bar do not change s
egy. The scoring of each player works as a kind of ‘‘Maxw
demon’’ that classifies agents into different groups, endow
each one with a different updating rate.

The equilibrium configuration that is reached in the GM
therefore entails a distribution of updating rates in whi
some players are essentially frozen while others modify th
attendance strategies frequently. This situation is comple
different from the one obtained with the dynamics of E
~18! in which all agents undergo stochastic perturbations
everytime step.

In order to show this we present in Fig. 5 some results
the GMG, in which we have used a large value ofdp(dp
50.8) and we have arbitrarily partitioned the ensemble
1001 players into two sets. One of the sets gathers all pla
having at most 10 points the other contains all the rest.
have plotted their respective density distributionsP(p). The
agents having less that 11 points are the ones that partic
more strongly in the dynamics because they undergo m
frequent updatings.

The above comparison indicates that the GMG and
thermal relaxation dynamics of Eq.~18! strictly coincide
only in the limit of T→0. However, the strong qualitativ
resemblance of the results fordp<0.6 allows us to interpret
dp, with these limitations, as equivalent to a thermal fluctu
tion.

The thermal interpretation ofdp has one interesting con
sequence. The most remarkable feature of the relaxation
cesses of the GMG performed with largedp is that the high
fluctuations prevents quenching~see Fig. 6!. This allows us
to provide a framework to the annealing procedure presen
in Refs. @8# and @9# that resembles more closely the trad
tional protocol of Ref.@10#.
1-6
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The method presented in Ref.@8# requires an iterative
procedure which involves a short evolution of theN-agent
system and the subsequent elimination of all points accu
lated in the system. This is repeated until a moment in wh
the distributionP(p) remains stationary. With the prese
interpretation ofdp, a thermal annealing relaxation for th
GMG can be performed for the cases in whichm is signifi-
cantly different from 1/2. This protocol can be assumed
take place in episodes. In the first episode, relaxation is
lowed using a value ofdp that is large enough to insure th
equilibrium is reached and quenching is prevented. The
lowing episodes start from the equilibrium reached in
preceding one, and a relaxation process is allowed wit
smaller value ofdp that is still large enough to avoid th
appearance of quenching. The process continues un
lower bound ofdp is reached. Following this ‘‘cooling’’ pro-
tocol quenching never occurs, an absolute minimum ofC is
obtained, and the population remains strongly polarized.

FIG. 5. Partial probability density distributions of individual a
tendance strategies for the GMG for different subsets of play
obtained for 1001 players, crowding level of 600/1001, and av
ages made over 2000 histories.~a! Asymptotic distributions. Subse
of players with more than 10 accumulated points~full line! and with
less than 11 points~dash line!. The total probability density distri-
bution is shown with empty boxes.~b! Density distributions at the
end of the first ten steps of the simulation. Players with zero po
~open boxes! have the greatest mobility, players with five and t
points ~full and dash lines, respectively! have lower mobility. The
total density distribution is shown in full triangles.
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VI. CONCLUSIONS

In the present paper, we provide an alternative descrip
of the dynamics of a system composed by many agents
play at the GMG. This is given in terms of the optimizatio
of a single global magnitude, instead of doing it in terms
independent actions of theN agents. We do this by studyin
the effect of introducing a cost functionC that is associated
to the second moment of the probability distribution of t
size of the attending parties.

We have proven thatC has the relevant properties of a
internal energy. In equilibrium, it is a positive extensiv
quantity that scales linearly with the number of agentsN and
its minima correspond to equilibrium configurations with
highly polarized population, as found in the BAM or th
GMG without quenching.

In addition, the deterministic dynamics that is deriv
from the descent along the gradient ofC leads the system to
configurations that have an equivalent polarization as
found with the traditional stochastic updating of the BAM
the GMG. This is a nontrivial equivalence between two co
pletely different organization schemes of theN-agent system.
On the one hand the gradient descent gives rise to a se
coupled differential equations that represents a coordina
evolution of all the agents as would be the result of t
action of a ‘‘central planner’’ of the whole system. On th
other hand, within the GMG all the agents act independen
from each other adjusting their attendance strategies with
purpose of optimizing their individual utilities. Even thoug
the two relaxation mechanisms are very different, the fi
configurations of the system turn out to have equivalent f
tures. In other words, from the point of view of game theo
the aggregate result of the actions of many independent p
ers tends to minimize the total loss. The introduction of t
cost function reverses this picture, in the sense that its m
mization gives rise to a coordinated action of theN agents.

The definition ofC in terms of the second moment of th
probability distribution of attending parties is reminiscent
the many-body Hamiltonian introduced in Ref.@12# to cast a

rs
r-

ts

FIG. 6. Asymptotic probability density distributions of ind
vidual attendance strategies for the GMG obtained with the va
of dp that are shown in the inset. Notice that for the highest va
of dp there is no quenching.m50.8.
1-7
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version of the MG into the spin glass formalism. In th
present caseC can also be considered as a many-body Ham
tonian with one- and two-body interactions in which theN
dynamic variables are the attendance probabilitiespi ’s, with
i 51,2•••N.

The introduction ofC and the associated relaxation pr
cess allows us to define a temperature parameter throu
Langevin-like approach. The value ofT remains associate
to the ensemble average of the square of the fluctuation
the attendance, scaled by the number of agents. Its intro
tion in C provides the proof that this quantity, in therm
equilibrium, scales linearly with the sizeN of the system and
therefore qualifies as an extensive parameter.

On the other hand, in order to be an intensive parameteT
should be independent of the size of the system. This
been checked numerically for the case of the GMG. Ho
ever, finite-size effects in the definition ofT become negli-
gible only for systems that are significantly larger than
minimal ones that already display the self-organization f
tures and that have spurred the popularity of the mino
game.

Thermal fluctuations can be included in the dynamics t
correspond to the descent along the gradient ofC. The cor-
responding distributionsP(p) can readily be found and
comparison can be made ofT with dp involved in the relax-
ation of the GMG or the BAM. A direct relationship can b
established between both parameters but only in the limi
dp→0. We have also considered the dynamics of the GM
with moderately large values ofdp when still the divergence
between the GMG and the thermal dynamics is not imp
tant. A stochastic updating that involves large values ofdp
could be thought to be associated to irresolute or badly
e
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formed agents that correct their attendance probabilities
forming significantchanges in each correction.

The GMG relaxation for large values ofdp avoids
quenching even form significantly different from 1/2. This
fact, together with the thermal interpretation ofdp allows us
to cast the annealing procedure presented in Ref.@8# into the
more traditional framework in whichT is progressively re-
duced in successive epochs. This ‘‘cooling’’ protocol cou
well be assimilated to a succession oflearning episodesof
the many-agent system. In the first episodes in which ag
have little ‘‘experience’’ and the information about the past
scarce, all agents perform large amplitude—even random
corrections. In the last episodes of the relaxation process
there is a richer information about the past history of t
system the agents perform finer corrections, the fluctuati
are smaller and the cost paid by a wrong attendance are
smaller.

The fact that on the one hand an extensive magnitude
be defined playing the role of an internal energy, and that
the other, a microscopic definition of the temperature can
made, opens the way to a the full thermodynamic descrip
of a system ofN-agent performing a GMG. This amounts
introduce a Gibbs distribution defined asF(C)5e2C/T/Z,
whereZ stands for the partition function. All thermodynam
functions should follow from this.
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