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E. Burgost Horacio Cevd* and R. P. J. Perazzd
IDepartamento de Bica, Comisia Nacional de Energi Atamica, Avenida del Libertador 8250, 1429 Buenos Aires, Argentina
’Departamento de Bica FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabello1428 Buenos Aires, Argentina
3Centro de Estudios Avanzados, Universidad de Buenos Aires, Uriburu 950, 1114 Buenos Aires, Argentina
(Received 4 July 2001; published 7 March 2p02

We study a cost function for the aggregate behavior of all the agents involved in the minority\g&@ner
the bar attendance modd@AM ). The cost function allows us to define a deterministic, synchronous dynamic
that yields results that have the main relevant features than those of the probabilistic, sequential dynamics used
for the MG or the BAM. We define a temperature through a Langevin approach in terms of the fluctuations of
the average attendance. We prove that the cost function is an extensive quantity that can play the role of an
internal energy of the many-agent system while the temperature so defined is an intensive parameter. We
compare the results of the thermal perturbation to the deterministic dynamics and prove that they agree with
those obtained with the MG or BAM in the limit of very low temperature.
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[. INTRODUCTION 1/2, the system gets stuck in quenched configurations that
strongly depend upon the initial conditions. Updating stops

The bar attendance mod&AM) [1] and the minority because agents have accumulated a great number of suc-
game(MG) (see Refs[2—7]) have recently become regular cesses. However, these “glassy” states can nevertheless be
testing grounds to investigate how the individual actions of &melted” into equilibrium if the memory of past successes is
system of independent agents give rise to some kind of magepeatedly eliminated in an iterative process that can be as-
roscopic ordering. In the MG, the agents have to make &imilated to an annealing procedure.
binary decision which for the sake of concreteness, it is usu- A remarkable result that has been obtained in all numeri-
ally taken to be associated to going or not going to a bar. Theal simulations is that the equilibrium configuration entails a
winning option is that of the minority. The MG is a particular diversity in the individual actions. The population is drasti-
case of the BAM which has in turn been introduced to showcally partitioned into two subsets, one that always goes to the
how an ensemble of agents that perform inductive reasoninar and the other that never goes. It therefore seems that in
can self organize to match some condition that is generallgpite of the fact that the agents do not exchange information,
accepted to be the most adequate. In the case of the BAMhey manage to coordinate their actions to proceed in two
this corresponds to the largest acceptable attendance withoopposite ways. The number of agents in both subsets are in a
incurring some discomfort. ratio that is equal tqu/(1— ). Such polarization is not an

Both models have been compared with each other in Refdntuitive result. A nave guess is to assume that all agents
[8] and[9] working out a generalized version of the M@e  should choose the same probability of attendance and this
GMG) in order to consider situations in which the minority should be equal tqu. However this turns out to be not a
is replaced byan arbitrary fraction u of the ensemble of stable distribution because parties that are larger or smaller
players. This is fixed externally as a control parameter. In althan the accepted crowding occur with a great chance.
these models the players update their attendance probabilities The fact that all agents adjust their attendance probabili-
with a random correction, depending upon the past record dies in order to minimize their failure§.e., to go when the
successes and failures. Asymptotic stable configurations atsar is crowded or not go when the bar is emdeads to an
always reached. These are, however, of quite a different naggregate behavior that minimizes a global cost associated
ture depending upon the values of the control parameters, afith inadequate attendances. We propose to express such
the initial conditions, and on updating the rules involved incost by the second moment of the attendance with respect to
each model. the acceptable level.

In the present paper we are interested in the cases in The purpose of the present paper is to investigate the ef-
which the asymptotic stable distribution can be assimilatedects of introducing that cost function in the relaxation dy-
to a kind of thermodynamic equilibrium. In these situationsnamics of the system. We show that this is a Lyapunov func-
the agents continue to update their attendance probabilitigton for the many-agent system, i.e., it is possible to derive a
but the corresponding probability density distribution re-deterministic dynamics as the descent along its gradient, that
mains stationary. The stochastic dynamics that has been demonotonically reduces its value. This corresponds to a
veloped for the BAM in Ref[9] always leads the system to heavily coordinated, synchronous evolution.
these types of configurations while in the cases studied for We prove that the cost function meets the requirements of
the GMG, wheng is significantly larger(or smallej than  an internal energy of the many-agent system. We also intro-

duce a temperature parameter through a Langevin-like ap-
proach that can be defined in terms of the fluctuations of the
*Email address: ceva@cnea.gov.ar attendance strategies. Except for finite-size effects this can
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be proven to be an intensive parameter. We also superimpo##ith this assumption, the distributigA(A) can be written as
thermal fluctuations to the deterministic dynamics mentioned
above. Depending upon the amplitude of these fluctuations, Mo b
the polarization is gradually smeared until a point in which it rAa=> ... 2 1l
completely disappears. '0=0 1p=0d=0
The thermally modified, relaxation process that we define
here is completely different from those involved in the GMG X6
or BAM approaches that involve the independent and unco-
ordinated actions of all the agents. The latter involves a ran- ] ]
dom updating of individual attendance strategies governed Ve define the cost function for the whole ensemble of
by a(smal) uncertainty amplitude that is interpreted as the@dents as in Refl9], namely, as the second moméfl]
precision of such updating. We prove that in the limit of low With respect to the tolerated crowding level
temperature, and small uncertainty amplitude both dynamics N
lead to entirely equivalent asymptotic equilibrium configura-
tions. The thermal interpretation of the uncertainty amplitude C= AEO (A=Nu)*P(A). )
also allows us to cast the annealing process presented in
Refs. [8] and [9] into a thermal framework as the well- |y order to calculate it, we introduce E€) into the defi-
known case of simulated annealifi0)]. , nition of Eq. (3) and perform first the summation ovér
In Sec. I, we derive the cost function, and in Sec. lll, We taking advantage of thé(A—Egld). Once this is done, one

investigate thg dynamics that corresponds 1o the qesce%n perform the summations involved in each of the terms in
along its gradient. In Sec. IV, we present a Langevin ap-

. i “Pwhich (Nu—=14)? splits down. The summations over dif-
proach to define the temperature in terms of the fluctuat|on§erent|,S decouple from each other and result either in a one;

that are present in the asymptotic equilibrium configuration._ . L 22 N .
In Sec. V, we compare this with more traditional approachezﬁ_rh’;r;en,?grdn’wlT:annd%:e+ r;‘f{ﬁ‘é(é q Zd)ai(r)\rtcl)n i(glfépd)(nd'pd')'
for the relaxation process. In Sec. VI, we draw the conclu- 9 9 y

sions.
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II. COST FUNCTION

— N2 _ 2 —_(n2
Consider a set o\ agents that have a probabilify(i =N (= (p)"+N(p)=(P?)), )

=1,2,... N) to go to the bar. The distribution of thg’s is
given by the probability density functioR(p). As we shall
shortly explain, thep; are updated in time according to some
dynamics and therefore the functid®(p) also changes in
time.

In the ordinary rules of the GMG when a player goes to

where(p™) stands for=,p™P(p)=Z=4pgng/N for m=1,2.
The expression of given in Eq.(4) contains no assumption
about the system being in equilibrium. This is the reason
why C is proportional toN? instead of being proportional to
the sizeN of the system, as befits to an extensive magnitude.

the bar and finds it is crowded or when she does not go anahe numerical simulations however indicate that in equilib-
the bar is empty, she loses a point. If the opposite happerd!M (P)=u and therefore this term cancels except for pos-
she gains a point. The level of crowding is specified by thesiPl€ fluctuations. Actually th©(N*) term is eliminated by
value of the control parametgr. When her account of points a1V distributionP(p) whose mean has the required vajue
falls below zero she updates her attendance probabilitfO @n initial condition with uniformly distributeg;’s and
choosing at random a different value within the interva) ( To(P)=1, as itis used for most simulations, the cosCis

— p/2,p;+ 5p/2). When equilibrium is reached, the result- =N(#—1/2)*+N/6. Such an initial condition is a good
ing distributionP(p) concentrates the population in the im- 9u€ss for the final distribution whem=1/2 (as for the most
mediate neighborhood gf=0 and p=1, plus an almost traditional settings of the M but it is mo!eed very poor for.
vanishing contribution from intermediate values. The ratio oft"® GMG whenw#1/2. In the next sections, we discuss in
the areas below these two peaks is closgtol — ). greater detail the value @f in equilibrium.

The aggregate behavior is associated to the density distri- 11€ nave guessP(p) =4(p— u) is also seen to cancel
bution P(A) that gives the probability of occurrence of a theQ(N ). terms inC. Howeve_r such distribution causes that
party of A customers attending the bar. The functiBa) is ~ Parties withA close to, but different fronN occur with a
of course completely determined B(p). In order to calcu- sizable probablhty._ TheO(N) in C are minimized preusely
late it let us assume without loss of generality that all theVhen the probability of occurrence of such parties tends to
agents distribute themselves in@+1 different bins of ~2€ro by polarizing the population into two subsets with op-
ng(d=0,1,...D) agents each, with strategigs=d/D. posite attendance strategies. To see this we approximate the

The density distributiorP(p) can then be written as two peaked equilibrium distribution that is usually obtained
in numerical simulations by

n

[=R

D
P()= 3 1 (p=Po). & P(p)= L a(p—py)+ Lop-p).

z|
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One readily sees that th@(N?) terms are eliminated when sod ' ]
nip,tnop,=uN and theO(N) terms are also eliminated if 50 :
the two peaks arep;=0;n;=N(1—wu), and p,=1;n, 4o-: .
= uN. The relaxation dynamics that tends to minimize indi- 301 b
vidual losses is therefore seen to also optimize the global 201 [
cost function defined in Eq$3) and (4). = 103, 1
& 3] ]
IIl. DETERMINISTIC DYNAMICS FOR GMG 5

All the agents of the system, through uncoordinated ac- 1] /J ]
tions minimize the total cosf that is an aggregate function 0. T T N 1

defined for the whole system. This fact suggests an alterna- ——

tive representation of the actions of the agents as a synchro- 0.0 02 04 0.6 08 1.0

nous, deterministic dynamics associated to the descent along P

the gradle_nt okC. .Thls IS c_iescnbed bY .the following set of FIG. 1. Probability density distributions obtained aftef $@ps

coupled differential equations for tig's: (solid ling), 2x10* steps(open circley and 2x10° steps(dash

line), using Eq.(10), 2ypN=1, and x=0.6. The first distribution

—n—=7[2N(u—(p))—(1—2p))]. (6) shows a rig.id displacement to thg right; the next ones show how the
Ip; population is progressively polarized.

dpi B JC
dt

In Eg. (6) » stands for a positive free parameter that—as ) ) L
we shall shortly see—provides the scale for the time evolu€nCespi(t) — u insteadgrow exponentially for alli indicat-
tion of the system. Th®(N?) andO(N) terms in Eq(4) are  ing that thep;’s departexponentially from the average and
translated into a fast and a slow dynamic that involve correceventually saturate at its largest or smallest possible values: 1
tions of thep; that are, respectivelf)(N) andO(1). To see  Or 0, thus polarizing the population of agents. This process
this we first derive the dynamics followed Ifp) by calcu- however takes place with a time constant If|2 that is

lating the average overin both sides of Eq. 6. We thus O(N) longer than the one involved in the evolution (f)
obtain and is independent of the size of the system. While the av-

erage(p) approaches very fast to the value the individual
dW(t) 1 pi's departslowly from the same value.
dr 2n(N=1)W(t) — 27’( 5 '“) ’ (7 Equations(6) can be tested numerically by approximating
them by finite differences. The individual attendance prob-
where we have séf/(t)=((p)— ). This can explicitly be abilities p; are thus taken to be updated gét+ 1)=p;(t)

integrated. The solution is +A(p;) where
p—12 —2p(N-1
Wt ="y +Wee 7(N-1) (8) A(pi)=n[2N(p—=(p)) = (1-2p)]. (10)
with W, standing for the initial value ofV(t). This expres- The resulting density distributior3(p) that are obtained

sion allows us in turn to find an approximate solution of thewith this dynamics are shown in Fig. 1. The valuespfind
equations of motion for the individuad;’s. To this end we therefore that of the time constaxtis in principle arbitrary.
write an asymptotic approximation of E¢) in which we  However if A>1, the only effects that are noticeable are
assume that a long enough time has elapsed sqphatu  those of the fast dynamics whilexf<1, the descent towards
can be approximated by the constant ternOgfL/N) in Eq.  the minimum keeps bouncing at opposite sides of the well

(8). By keeping only the leading order M we obtain and never reaches its bottom. When2/<?2 the descent is
gradual enough so that the interplay of both terma (ip;)
dp leads the system to a minimum 6f
szn(pi_“)' ©) The intermediate stages in the gradient descent are also

shown in Fig. 1. In the first few steps théast uniform

Note that dependence @f(t) involves apositiveexponen- correction ofO(N) is seen to shift rigidly the initial distri-
tial. However, this equation is not valid for-~ because the bution to one side with the aim of adjusting the valu€ jpf
fact that thep;’s are probabilities, and are therefore boundedto that of x. As a consequence, agents are piled up in one
between 0 and 1, it is not included in the equations but ratheend while the other is completely cleared. Once the leading
in the boundary conditions of Eq5). term in C is nearly canceled, the slow dynamics gradually

Equations(7) and(9) correspond, respectively, to the fast gathers agents &bth ends of the distribution producing mi-
and slow dynamics that have been mentioned above. In theor fluctuations in the value dfp). The density distribution
first place we see that except for terms that@(@/N), (p) P(p) that is finally obtained is seen to correspond to a
approachesw exponentially with the very short-time con- strongly polarized population thus reproducing the main fea-
stanth = 1/(27N) that tends to zero as the system involves ature of the equilibrium distributions obtained with the rules
larger number of individuals. On the other hand, the differ-traditionally used in the GMG or the BAM.
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The present approach yields a density distribution thaiVe have added an indesto W(t) in Eq. (7) to stress the fact
displays the same polarization that is found in the GMG or inthat this is the value ofW(t) in the presence of stochastic
the BAM. It is remarkable that such a general qualitativeexternal fluctuations. The source of nois@) can be taken
agreement is found, although those frameworks differ deeplyo be the average dfl uncorrelated sources of random fluc-
from the deterministic formulation. The conceptual differ- tuations affecting all the independent agents. One still has to
ence between the two approaches lies in the special rolspecify a parameter related to the statistical properties of the
played by the record of successes and failures that is kept idistribution of the stochastic functioln(t). We will shortly
the BAM or GMG and that is completely absent in the prove that this is closely related to the temperature. As usual
present treatment. The usual rules of the GMG can thus b@e assume
considered to correspond to a dynamics constrained by the
(positive balance of points that have been accumulated in mz 0, (12
the past instances of the game. There are other differences
that deserve further discussion. These are related to the sto- — ,
chastic elements of the dynamics used in that framework LOLA)=Ts(t=t"). (13
which are absent from the present one. Within this approach, —

these can be assimilated to the effects of a finite temperaturd? Eds-(12) and(13) and in all what follows( . . .) denotes
We turn to this point in the next section. an average over a suitable ensemble of replicas of the

N-agent system. The parametéris a constant that repre-
sents the mean-square amplitude of instantaneous, uncorre-
IV. THERMAL FLUCTUATIONS lated perturbations. The stochastic differential Efl) can

explicitly be integrated. The result is
The usual rules of the BAM or the GMG involve a sto- plcitly 9

chastic updating of the attendance probabilities of each cus- t

tomer. When the account of points of thth player falls Ws(t)=W(t)+e‘2”(N‘1)‘f e?"N"De| (w)dw, (14)
below zero a new value qf; is chosemat randomfrom the 0

interval (p;— ép/2,p;+ dp/2). This can be interpreted as a

kind of thermal fluctuation in whiclsp can be related to the Where W(t) is the solution given in Eq(8) in which no
temperature. fluctuations are present. If an average is made on both sides

A few qualitative features support this. In equilibrium, the Of Ed. (14), over a subensemble of systems having the same
population is drastically polarized into those that consistentlynitial conditionsW, appearing in Eq(8), one can immedi-
go to the barand thereforep,=1) and those that do not go ately see that Eq.12) implies thatWg(t) =W(t) and there-
(p;=0). A small fraction having;’s with intermediate val- fore the convergence dfp) to w [up to termsO(1/N)] is
ues continuously migrate between both extreme strategieglso insured within the stochastic dynamics. If the mean-
This migration causes that the value(gh fluctuates around ~square fluctuations oiVs(t) are calculated with the aid of
w. These random values ¢p) have a distribution that is Ed. (13), we get
sharply peaked at that value and has a width that is regulated
by ép. In what regards the density distributi®{p), a small
value of 5p produces sharp peaks p=0 andp=1 and
P(p)~0 for intermediate values. For larger values &g
there is a larger fraction of players that migrate betwpen The effect of the stochastic term W(t) produces a nonva-
=0 andp=1 thus producing a rising in the “bottom” of the ' nishing valueWw?(=). In ordinary statistical mechanics, the
distributionP(p). o _mean-square fluctuations of the stationary solution of the ve-

The above qualitative arguments provide hints to intro-jocity of Brownian particles is directly related to its average
duce thermal fluctuations in the deterministic dynamics preginetic energy and can be set equalki®. By analogy we
sented in the preceding section and also about their relatiofgmally define a temperature parametethat is indepen-
ship with 6p for the case of the GMG. However a singular gent from the size of the system, as the mean-square fluctua-
situation occurs fop—0 that is associated to an infinitely tions of (p) in an equilibrium configuration, scaled by the

long relaxation process or wheip>1 in which this param-  umber of agents of the system. Neglecting te@{4/N?)
eter loses its physical meaning of being a probability. we obtain

Thermal-like fluctuations can formally be introduced fol-
lowing the same steps as the Langevin approach to describe r
a Brownian particle. In the present situation we start with the T= N((p)—,u)2=4—. (16)
Eqg. (7) for the motion of the average valde), and we add 7
a stochastic ternb.(t) that accounts for the random fluctua-

W2(1) =W2(t) + %[1—54"'“]. (15)

The parameter is a factor relatingl’ with the amplitude of

tions the random fluctuations and plays a similar role than the
Boltzmann constant.
dWg(t) 1 Equation(16) allows us to write the ensemble average of
gt~ 27INTDWe(D) =27 5= p [+ L (D). the costC for an equilibrium configuration and for finite

(1)  temperature. Up to the leading orderNhwe obtain
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FIG. 2. Linear dependence of the dimensionless quaﬂ_tﬂy a 0.0 0.2 04 0.6 0.8 10
function of N for the GMG, u=0.6, and different values afp. P
e TN2< 20 P
C=N?(u—(p)?+N((p)—(p)*>)=N[T+pu—(p)*>]. 0
(17) —— 8p=0.01 Fol
. r ] e 5p=0.8 -
C is a positive, extensive magnitude which, in equilibrium, 1
grows linearly with the size of the system and can therefore 4 T
be taken to play the role of an internal energy. o) .
The linear dependence ©f with the size of the system Q-

can be checked for the GMG. To do so we have calculated
the cost using the definition of E¢B), with a different num- ]
ber of agents. We first allowed the system to relax to the 14
asymptotic equilibrium configuration and performed a suit- ]
able ensemble average over several replicas of the system. : . . :
The linear dependence is shown in Fig. 2. The last iteration 0.0 02 0.4 06 0.8 1.0
steps are used to estimate the dispersion of the numerical
result and is shown with a pair of dotted lines. The slope of G 3. (a) Probability density distribution obtained with the
these lines change slightly with the paramesgr of the  thermal dynamic of Eq(18) for the values ofr that are shown in
GMG. This is due to the relation betwed@nand 6p that we  the inset.(b) Same distributions obtained with the stochastic dy-
discuss later. namics of the GMG, for the values @p shown in the inset.

Given the stochastic dynamics of Ed.8) together with
the definition in Eq(16) it is possible to calculate the value
To include thermal fluctuations into a numerical treatmentof T in an equilibrium configuration, and relafewith 7. The
of the deterministic dynamics amounts only to introduce gparametery has to be chosen such that the relaxation of the

V. THERMAL RELAXATION

random additive term in Eq10), namely, deterministic dynamics is guaranteed, i.e., when the time
, constant\ = 1/(2%N) introduced in Sec. Il is\~1. In Fig.
pi(t+1)=pi()+A(p) +LO(1), (18 4 we show that, as expectebl~ 2.

Equation(16) allows us also to calculat& in any con-
whereL .= 7(1/2—r) andr is a random number uniformly figuration reached through the stochastic dynamics of the
distributed in the intervdl0,1]. This function represents the GMG or the BAM. With this we can check two important
fluctuations produced on théh agent by a thermal bath. The features. The first is an estimation of the finite-size correc-
temperature is defined by the second moniéwf the prob- tions in the definition ofl given in Eq.(16), i.e., the regime
ability density of theL(Ti)(t). in which T is independent of the size of the system. The

The limit in which L(Ti)(t) has zero widthiand therefore ~second outcome is to establish a quantitative relationship be-

r=0) corresponds to the deterministic dynamics discussefveenT anddp that goes into the relaxation dynamics of the

in Sec. Il. Larger values of are associated to fluctuations GMG.

that may eventually override the updating amplitusig;) We have calculatedVi(t) for the GMG using several
and tend to smear the distribution with two shatgfunc-  values ofép andN. We have allowed to be large enough to
tions, increasing the fraction of the population that havereach equilibrium. We have then performed an ensemble av-
strategiep; #0 or 1.[See Fig. 8).] If 7 is further increased erage over several replicas of the system. The last steps have
the polarization is progressively destroyed because the drieen used to gauge the dispersion of the numerical values.
of the p;’s towards 0 or 1 has to equilibrate against randomThe results are shown in Fig(l®) where we pIolNWﬁ(oo) as
shocks that prevent them to reach those limiting values.  a function of p.
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- 1 T T arbitrarily large. This is so because it measures the uncer-
0,025 4 7 tainty of the value of a probability. Values @fp=1 have
7] therefore little physical meaning. In addition,dp is never-
0,020 7 theless extended to values higher than one by any plausible
7 ] analytical extensioffor instance using periodic or reflective
0.015 4 7  boundary conditions the fluctuationaV2 for Sp>1 are seen
= 1 to saturate at an approximately constant valsee inset in
Q 00104 7 Fig. 4b)]. These facts are the reason that the correspondence
] ] betweendp and T necessarily breaks down.
0.005 4 (@) A A comparison of the probability density distributions
] P(p) obtained with both approaches further supports this
0,000 7 departure. In Fig. @) we show the equilibrium density dis-
T T T T T T T T T T tributions that are obtained with the stochastic, asynchronous
0.000 0,001 0002 0003 0004 0005 0,008 updating rules of the GMG for two values @p (and u
T =0.6). It is seen that these diverge from those of Fig) 3
0.030 that are obtained with the dynamics given in Etg). Note
’ T T T T I | i
| | however that there are noticeable resemblances for small am-
0.025 | 0.08 i plitude fluctuations. See for instance the distributions plotted
' in full line in Fig. 3(b) and the one for=0.003 in Fig. 3a).
0.020 ] 0,04 ] As mentioned before, the origin of the departure between
T ] both dynamics can be found in the scoring of successes and
1 failures that is used in the GMG, that is absent in the present

approach. Some customers can be considered to be excluded
from the updating dynamics as a consequence of their great

0.010 7 7] accumulation of points. This, for instance, produces the large
] value of P(p=1): many players that have accumulated a

00059 ® 7 large positive account attending the bar do not change strat-
7 3/ egy. The scoring of each player works as a kind of “Maxwell

0,000 JUSA demon” that classifies agents into different groups, endowing

each one with a different updating rate.
The equilibrium configuration that is reached in the GMG
FIG. 4. (a) Relationship between the dimensionless quantities therefore entails a distribution of updating rates in which
and T as defined in Eq(16). Solid squares correspond to the nu- some players are essentially frozen while others modify their
merical calculation, while the line is the quadratic regressidfi10 attendance strategies frequently. This situation is completely
=5.4310°—0.114r+703.9%, with R?=0.9999.(b) Linear depen-  different from the one obtained with the dynamics of Eq.
dence of the dimensionless fluctuatidNgV? with sp<1 for the  (18) in which all agents undergo stochastic perturbations in
GMG, and several values of (indicated in the figure The upper  everytime step.
inset shows that fluctuations saturate at a limiting vatu@.05 if In order to show this we present in Fig. 5 some results of
the plot is extended fosp>1. the GMG, in which we have used a large value &g 5p
) =0.8) and we have arbitrarily partitioned the ensemble of
All the above-mentioned features can be extracted from go1 players into two sets. One of the sets gathers all players
Fig. 4. First finite-size effects are clearly seen to gffect onlyhaving at most 10 points the other contains all the rest. We
the smallest systems up ®~500. Second, the indepen- haye plotted their respective density distributidh@). The
dence ofNWZ() from the size of the system as assumed inagents having less that 11 points are the ones that participate
the definition of Eq.(16) follows from the fact that the more strongly in the dynamics because they undergo more
curves forN=500 lump tightly together. In the third place, a frequent updatings.
linear regression of all the curves establishes #@mand T The above comparison indicates that the GMG and the
have the same physical interpretations, and within the interthermal relaxation dynamics of Eq18) strictly coincide
val considered are nearly proportional to each other, namelynly in the limit of T—0. However, the strong qualitative
T=Kp, with K=(320+20)10 *. resemblance of the results fép<0.6 allows us to interpret
The fact thatT and 6p are conceptually equivalent leads Sp, with these limitations, as equivalent to a thermal fluctua-
to extend the GMG simulations to higher values &f.  tion.
These values have seldom been expldrE8] in the litera- The thermal interpretation ofp has one interesting con-
ture because this parameter measuresrmer adjustments  sequence. The most remarkable feature of the relaxation pro-
performed by the agents that try to find the “best” atten- cesses of the GMG performed with largp is that the high
dance probability. Large values 6p could for instance cor- fluctuations prevents quenchirigee Fig. 6. This allows us
respond to irresolute or hesitating agents. to provide a framework to the annealing procedure presented
There are however important points that have to be conin Refs.[8] and[9] that resembles more closely the tradi-
sidered. In the first place the value 6p cannot be taken tional protocol of Ref[10].
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. FIG. 6. Asymptotic probability density distributions of indi-
10 {4 vidual attendance strategies for the GMG obtained with the values

(b) . of &p that are shown in the inset. Notice that for the highest value
8 :.-" . of ép there is no quenching.=0.8.

VI. CONCLUSIONS

In the present paper, we provide an alternative description
of the dynamics of a system composed by many agents that
play at the GMG. This is given in terms of the optimization
of a single global magnitude, instead of doing it in terms of

——————— independent actions of thé agents. We do this by studying
0.0 0.2 0.4 0.6 08 1.0 the effect of introducing a cost functiahthat is associated
P to the second moment of the probability distribution of the

FIG. 5. Partial probability density distributions of individual at- S1Z& Of the attending parties. _
tendance strategies for the GMG for different subsets of players e have proven thaf has the relevant properties of an
obtained for 1001 players, crowding level of 600/1001, and averiNternal energy. In equilibrium, it is a positive extensive
ages made over 2000 histori¢a) Asymptotic distributions. Subset quantity that scales linearly with the number of agevtnd
of players with more than 10 accumulated poiitsl line) and with  its minima correspond to equilibrium configurations with a
less than 11 point&dash ling. The total probability density distri- highly polarized population, as found in the BAM or the
bution is shown with empty boxeéb) Density distributions at the GMG without quenching.
end of the first ten steps of the simulation. Players with zero points In addition, the deterministic dynamics that is derived
(open boxeshave the greatest mobility, players with five and ten from the descent along the gradientfeads the system to
points (full and dash lines, respectivglyrave lower mobility. The  configurations that have an equivalent polarization as that
total density distribution is shown in full triangles. found with the traditional stochastic updating of the BAM or
the GMG. This is a nontrivial equivalence between two com-
The method presented in R€B] requires an iterative pletely different organization schemes of thegent system.
procedure which involves a short evolution of tNeagent  On the one hand the gradient descent gives rise to a set of
system and the subsequent elimination of all points accumueoupled differential equations that represents a coordinated
lated in the system. This is repeated until a moment in whiclevolution of all the agents as would be the result of the
the distributionP(p) remains stationary. With the present action of a “central planner” of the whole system. On the
interpretation ofép, a thermal annealing relaxation for the other hand, within the GMG all the agents act independently
GMG can be performed for the cases in whiehis signifi-  from each other adjusting their attendance strategies with the
cantly different from 1/2. This protocol can be assumed topurpose of optimizing their individual utilities. Even though
take place in episodes. In the first episode, relaxation is akhe two relaxation mechanisms are very different, the final
lowed using a value ofp that is large enough to insure that configurations of the system turn out to have equivalent fea-
equilibrium is reached and quenching is prevented. The foltures. In other words, from the point of view of game theory
lowing episodes start from the equilibrium reached in thethe aggregate result of the actions of many independent play-
preceding one, and a relaxation process is allowed with @&rs tends to minimize the total loss. The introduction of the
smaller value ofép that is still large enough to avoid the cost function reverses this picture, in the sense that its mini-
appearance of quenching. The process continues until @ization gives rise to a coordinated action of thegents.
lower bound ofép is reached. Following this “cooling” pro- The definition ofC in terms of the second moment of the
tocol quenching never occurs, an absolute minimund &  probability distribution of attending parties is reminiscent of
obtained, and the population remains strongly polarized. the many-body Hamiltonian introduced in REE2] to cast a
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version of the MG into the spin glass formalism. In the formed agents that correct their attendance probabilities per-
present casé can also be considered as a many-body Hamilforming significantchanges in each correction.

tonian with one- and two-body interactions in which tRe The GMG relaxation for large values ofp avoids
dynamic variables are the attendance probabiljtiés with  quenching even foj significantly different from 1/2. This
i=1,2---N. fact, together with the thermal interpretation&g allows us

The introduction ofC and the associated relaxation pro- to cast the annealing procedure presented in [B¢into the
cess allows us to define a temperature parameter throughnaore traditional framework in whici is progressively re-
Langevin-like approach. The value dfremains associated duced in successive epochs. This “cooling” protocol could
to the ensemble average of the square of the fluctuations efell be assimilated to a successionleérning episodesf
the attendance, scaled by the number of agents. Its introduthe many-agent system. In the first episodes in which agents
tion in C provides the proof that this quantity, in thermal have little “experience” and the information about the past is
equilibrium, scales linearly with the si2¢of the system and scarce, all agents perform large amplitude—even random—
therefore qualifies as an extensive parameter. corrections. In the last episodes of the relaxation process, as

On the other hand, in order to be an intensive paraméter, there is a richer information about the past history of the
should be independent of the size of the system. This hasystem the agents perform finer corrections, the fluctuations
been checked numerically for the case of the GMG. How-are smaller and the cost paid by a wrong attendance are also
ever, finite-size effects in the definition @f become negli- smaller.
gible only for systems that are significantly larger than the The fact that on the one hand an extensive magnitude can
minimal ones that already display the self-organization feabe defined playing the role of an internal energy, and that on
tures and that have spurred the popularity of the minoritythe other, a microscopic definition of the temperature can be
game. made, opens the way to a the full thermodynamic description

Thermal fluctuations can be included in the dynamics thabf a system oN-agent performing a GMG. This amounts to
correspond to the descent along the gradienf.ofhe cor- introduce a Gibbs distribution defined ds(C)=e “7/Z,
responding distribution®(p) can readily be found and a whereZ stands for the partition function. All thermodynamic
comparison can be made Bfwith Sp involved in the relax-  functions should follow from this.
ation of the GMG or the BAM. A direct relationship can be
established between both parameters but only in the limit of
6p—0. We have also considered the dynamics of the GMG
with moderately large values @ when still the divergence E.B. has been patrtially supported by CONICET of Argen-
between the GMG and the thermal dynamics is not importina, PICT-PMTO0051; H.C. and R.P. were partially supported
tant. A stochastic updating that involves large valuespf by EC Grant No. ARG/b7-3011/94/27, Contract No. 931005
could be thought to be associated to irresolute or badly inAR.
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